
Fixing Inconsistencies in UML Design Models

Alexander Egyed
Teknowledge Corp.

4640 Admiralty Way, Suite 1010
Marina Del Rey, CA 90292, USA

aegyed@teknowledge.com

Abstract

Changes are inevitable during software develop-

ment and so are their unintentional side effects. The
focus of this paper is on UML design models, where
unintentional side effects lead to inconsistencies. We
demonstrate that a tool can assist the designer in dis-
covering unintentional side effects, locating choices
for fixing inconsistencies, and then in changing the
design model. Our techniques are “on-line,” applied
as the designer works, and non-intrusive, without
overwhelming the designer. This is a significant im-
provement over the state-of-the-art. Our tool is fully
integrated with the design tool IBM Rational Rose™.
It was empirically evaluated on 48 case studies.

1. Introduction

The very essence of iterative software development

is change – and the designer’s ability to make changes
wherever and whenever necessary [2]. Changes have
desired effects. They add features or fix bugs. How-
ever, changes also have undesired side effects [4,11].
They introduce new bugs.

This paper examines the impact of changes on
UML design models [15]. There, negative side effects
are observable if they violate known design rules (e.g.,
consistency and well-formedness rules; best practices).
This paper explores how to discover the negative side
effects of design changes, how to locate choices for
fixing them, and how to predict the positive and nega-
tive side effects of these choices. Understanding about
the impact of design changes is a fundamental best
practice of the software engineering process [4,11,14].

Change impact analysis for design models is a com-
plex problem because not every change causes incon-
sistencies, not every inconsistency is undesirable (liv-
ing with inconsistencies [1,9]), and not every undesir-
able inconsistency is fixable without causing new in-
consistencies. In fact, it is infeasible and impractical to

enumerate all ways of fixing a given inconsistency as
there are too many [11]. It would certainly overwhelm
the designer if more than a handful of choices were
presented. And it is beneficial to know what caused an
inconsistency to decide how to fix it (some are caused
by incorrect changes; others are caused by correct al-
beit incomplete changes).

We do not believe that a tool can automatically re-
solve inconsistencies because a tool cannot know
whether an inconsistency is tolerable or why it was
caused. However, a tool can be an assistant that pro-
vides the facts the designer must consider [16]. This
work demonstrates that it is feasible to locate all
choices for fixing inconsistencies and to predict their
positive and negative side effects. However, inconsis-
tencies are not independent events [4,11]. If a choice
for fixing one inconsistency inadvertently affects how
to fix another one then the designer should know about
this dependency. This work thus also demonstrates
how to identify dependencies among inconsistencies.

No existing work is able to identify all choices for
fixing inconsistencies. Also, to the best of our knowl-
edge, no existing work is able to identify dependencies
and predict side effects. Our approach is also unique in
that it does not analyze rules but rather observes their
behavior during evaluation (i.e., model profiling [6]) –
thus treating rules as black-box entities. Our approach
is fully automated, tool supported, and integrated with
the modeling tool IBM Rationale Rose™. Its correct-
ness, completeness, and scalability are demonstrated
and supported by the empirical evaluation of 48 small-
to-large-scale UML models covering a total of 250,000
model elements and over 400,000 separate rule evalua-
tions.

2. Related Work

Historically, impact analysis originated from data-
base systems where data changes needed to be propa-
gated to affected views and/or distributed locations. In

29th International Conference on Software Engineering (ICSE'07)
0-7695-2828-7/07 $20.00 © 2007

software development, most
work on impact analysis focused
on source code. Some of these
techniques emphasized on static
or dynamic program slicing [13].
Other techniques emphasized on
traceability. Bohner-Arnold [3]
discuss many of these ap-
proaches. The goal is typically to
narrow down what part of the
system to change and/or what
part to reanalyze/retest after the
change. These approaches are
very powerful but do not readily
apply to (UML) design models.

The work of Nentwich et al. [11] does apply to
UML design models. It detects repair actions for fixing
inconsistencies by analyzing consistency rules ex-
pressed in first-order logic and models expressed in
xLinkIt [12]. Their repair actions are correct but not
guaranteed to be complete (i.e., the repair actions iden-
tified depend in part on how the rules are written). Fur-
thermore, their work does not identify dependencies
among inconsistencies and potential side effects for
fixing them – thus treating repair actions as independ-
ent events. However, their work is also fundamental to
our work because they propose abstract repair actions
as a way to reasonably enumerate the otherwise large
number of concrete ways of fixing inconsistencies.

The work of Briand et al. [4] also computes change
actions for UML models but takes an alternative ap-
proach. It identifies specific change propagation rules
for all types of changes. This is problematic because
there is no guarantee of correctness or completeness
associated with these rules. Indeed, it is very hard to
enumerate all kinds of changes and all their effects [6].

While it is important to know about inconsistencies,
it is often too distracting to resolve them right away.
The notion of “living with inconsistencies” [1,9,10]
advocates that there is a benefit in allowing inconsis-
tencies in design models on a temporary basis. While
our approach provides choices for fixing inconsisten-
cies instantly, it does not require the designer to fix
them instantly. Our approach lets the designer explore
inconsistencies according to their interests in the
model.

3. Background, Illustration, and Problem

We previously introduced an approach for instant
consistency checking of UML models [6]. This ap-
proach was fully automated and correctly decided what
consistency rules to re-evaluate when a model
changed. This approach was unique in that it did not

require consistency rules with special annotations but
rather treated consistency rules as black-box entities. It
was based on a key enabling technology – a model
profiler. Much like a source code profiler observes the
execution of the source code during runtime, our
model profiler observed the evaluation of a model dur-
ing consistency checking (i.e., it knows what fields of
what model elements are accessed when and how of-
ten). In our previous work, we used profiling data to
establish a correlation among model elements and con-
sistency rules to decide what consistency rules to re-
evaluate with changes. This paper builds on this tech-
nology.

3.1. Illustration and Two Sample Rules

The illustration in Figure 1 depicts four UML dia-
grams [15] created with the modeling tool IBM Ra-
tional Rose™. The given model represents a design-
time snapshot of a real, albeit simplified video-on-
demand (VOD) system [5]. The class diagram repre-
sents the structure of the VOD system: a Display used
for visualizing movies and receiving user input and a
Streamer for downloading and decoding movie
streams. The two statechart diagrams describe the be-
havior of the two classes. For example, the behavior of
the Streamer simply toggles between the waiting and
the streaming state depending on whether it receives
the wait or stream commands. Finally, the sequence
diagram contains interactions among objects of the
Streamer and Display classes. The interaction depicts a
user invoking the select and stream messages on object
d (an instance of Display), which, in turn, invokes an-
other stream message on object s (an instance of
Streamer). The sequence diagram also shows that in-
voking stop on Display causes wait on Streamer.

Consistency rules for UML describe conditions that
all UML models must satisfy for them to be considered
valid (e.g., syntactic well-formedness, coherence be-

Class
Diagram

Statechart
Diagram for

Class Streamer

Statechart
Diagram for Class

Display

select

stop

stream

wait

stream Streamer

stream()
wait()

Display

select()
stream()
stop()

d : Displayd : Display s : Streamers : Streamer

3: stream

1: select

4: stop

5: wait

2: stream

Sequence Diagram for instances of
classes Display and Streamer

Figure 1. UML Model Illustration of a Video-On-Demand System

29th International Conference on Software Engineering (ICSE'07)
0-7695-2828-7/07 $20.00 © 2007

tween different diagrams, and even best practices). The
empirical study in this paper involves 34 such consis-
tency rules covering class, sequence, and statechart
diagrams. For example:

Rule 1: message name must match class method
Rule 1 states that the name of a message must

match a method in the receiver’s class. If this rule is
evaluated on message select in the sequence diagram
then the condition first identifies the receiver object d
of the message (message.receiver) (see arrowhead of
message), followed by the declared base class Display
(receiver.base), and the methods {select(), stream(),
stop()} owned by the class Display (base.methods).
The condition then returns true because the set of
method names contains the message name select.

Rule 2: message sequence must match behavior
Rule 2 states that the sequence of incoming mes-

sages in an object of a sequence diagram must match
the allowed behavior of the statechart diagram of the
object’s class. For example, object d receives the mes-
sages select, stream, and wait – in this order. The state-
chart diagram of class Display (the base of object d)
allows this behavior because it is a valid sequence.

3.2. Understanding Change

Since consistency rules are conditions on a model,
their truth values change only if the model changes.
Instant consistency checking thus requires an under-
standing when, where, and how the model changes.
For this purpose, our UML/Analyzer tool relies on the
UML Interface Wrapper component – an infrastructure
we previously developed and integrated with IBM Ra-
tional Rose and other COTS modeling tools [8]. This
infrastructure exposes the modeling data of the COTS
modeling tool in an UML-compliant fashion. It also
employs a sophisticated change detection mechanism.
The latter is particularly important because it notifies
our tool of changes to the UML model in real time
while the designer uses the modeling tool. The consis-
tency rules themselves are hard coded into the logic of
the UML/Analyzer tool. No explicit rule language was
used. However given that the UML Interface Wrapper
does not observe the internals of our tool but rather
profiles its interaction with the Rose modeling tool, it
should be quite simple to replace the consistency
checker component and rule language of our tool.
More details on the tool’s architecture are in [7].

3.3. Problem Statement Revisited

Note that a rule may be instantiated and evaluated

many times. The 34 rules used in this study were in-

stantiated over 400,000 times on the 48 UML models
we evaluated. Every rule instance represented a sepa-
rate consistency statement. All rule instances had to be
consistent for the model to be consistent. Thus, the
designer had to understand and manage the impact of a
design change onto all rule instances. This was no easy
task. Fortunately, a design change did not randomly
affect rule instances. Rejlich [14] and Briand et al. [4]
argued that change impact analysis only had to con-
sider a limited degree of neighboring model elements.

Our empirical evaluation (Section 6) showed that
90% of the rule instances accessed at most 11 model
elements spanning up to five degrees of neighbors.
While this number appears small, one must consider
that the number of accessible model elements increases
exponentially with the degrees of neighbors involved.
We evaluated this increase on the 48 UML models and
found that five degrees of neighbors involve between
several hundred and several thousand model elements
depending on the model (Figure 2). It was not practi-
cal for a designer to consider these many model ele-
ments to understand the impact of a single design
change.

1

10

100

1000

10000

100000

1 2 3 4 5 6 7 8
Degrees of Neighbors

M

od
el

 E
le

m
en

ts
 R

ea
ch

ab
le

thick line = average
across all models impact of a change

covers up to five
degrees of neighbors

Figure 2. Exponential Increase of Number of Model

Elements Reachable by Degrees of Neighbors

4. Approach

4.1. Discovering Effects of Design Changes

The only correct way of detecting the negative ef-
fects of a design change is for the designer to execute
the design change and observing its effects. In [6], we
demonstrated that it is possible to re-evaluate the im-
pact of design changes instantly for many kinds of
consistency and well-formed rules. A design change
may cause one or more of the following situations:

A design change may cause the instantiation of a
rule, which, once evaluated, is either consistent (new
C) or inconsistent (new I). A design change may also
require the re-evaluation of a rule instance. This rule
instance may remain consistent (C->C) or inconsistent
(I->I) or it may change from consistent to inconsistent

29th International Conference on Software Engineering (ICSE'07)
0-7695-2828-7/07 $20.00 © 2007

(C->I) or from inconsistent to consistent (I->C). A
design change may also cause a rule instance to be-
come obsolete, usually when a model element is de-
leted or its evaluation path is broken (removed C or
removed I).

One may think of the negative side effects of a de-
sign change as the ones that lead to inconsistencies as
in new I or C->I. If a design change failed to correct a
previously inconsistent rule (I->I) then this may also
be considered an undesired side effect.

Continuing with the illustration in Figure 1, con-
sider the simple problem of renaming the method
stream of class Display to play to avoid the confusing
dual use of the term stream. Renaming the class
method alone is bound to cause inconsistencies be-
cause other diagrams might refer to it by name. Also, a
global search and replace is useless because the term
stream is also used in the class Streamer to mean
something else. Let us assume that the designer, after
inspecting the model, renames the class method, the
same-named state transition in Streamer’s statechart
diagram, and the message “3: stream” in the sequence
diagram – three changes.

To identify whether these three design changes are
sufficient to change the naming convention of stream,
we use the UML/Analyzer tool. The tool determines
that the four previously consistent rule instances R13,
R14, R22, and R23 have become inconsistent (C->I).
In [6], we demonstrated that the feedback generated by
the UML/Analyzer tool is complete and correct.

R13 Rule 1 evaluated on link message “2:stream”
R14 Rule 1 evaluated on link message “3:stream”
R22 Rule 2 evaluated on object “s:Streamer”
R23 Rule 2 evaluated on object “d:Display”

While a tool can identify inconsistencies caused by
changes, it cannot decide on whether they are desir-
able or not. It is safe to assume that consistencies are
always desirable. Yet, it is invalid to claim that incon-
sistencies are always undesirable. There are certainly
situations where designers do tolerate inconsistencies
[9] (usually temporarily).

Since a tool cannot decide whether the effects of a
change are desirable or not, the designer must make
this decision. If the designer is ok with the effects of a
design change then there is no problem. But if the ef-
fects are undesired then the designer may want to fix
them. The following demonstrates how to locate the
choices for fixing inconsistencies.

4.2. Locating Incorrect Model Elements

If an inconsistency is undesired then this implies
that a design change was not planned and/or executed

correctly. There usually are multiple choices on what
model elements to change in order to fix an inconsis-
tency but it is typically very hard to identify them all
[11]. In the following, we will show how our approach
locates all choices automatically. If the designer should
also know why an inconsistency happened then our
approach narrows down the list of choices.

Locating Choices for Fixing an Inconsistency

We use model profiling [6] to determine which
model elements and fields are accessed during the
evaluation of a rule. Take, for example, rule instance
R14 – one of the four inconsistent rules identified in
4.1. R14 evaluates the consistency of the message
“2:stream” with respect to Rule 1. Table 1 depicts the
list of model elements/fields accessed during the
evaluation of the rule. We see that the rule first looked
at the name of message stream and then at its receiver
(object d), the receiver’s base class (Display), and all
of the class’ methods. The rule was inconsistent be-
cause the name of the message did not match the name
of one of the methods.

Table 1. Scope Elements for Rule R14
message stream[name] I-only
message stream[receiver] I-only
object d[base] C&I
class Display[methods] C-only
method select[name] C-only
method play[name] C-only

R1
4

method stop[name] C-only

We define a scope element to denote a model ele-
ment/field pair – the smallest kind of element in UML
models. From [6] we know that the scope determined
through model profiling is complete which means that
it includes all scope elements that affect the consis-
tency of a rule. Consequently, at least one scope ele-
ment must change to fix a given inconsistency. There
are several choices for fixing R14:

1) renaming message stream to play
2) changing the receiver of message play to object s
3) adding a new method stream to the class Display
4) changing the ownership of object d to Streamer
5) renaming method select to stream
6) renaming method play to stream
7) renaming method stop to stream
8) deleting message stream (makes R14 obsolete)

And there are additional choices. For example, in-

stead of adding a new method stream to Display, we
could move the existing method stream from Streamer
to Display. With all its variations, one could come up
with a very large number of concrete fixes for this in-

29th International Conference on Software Engineering (ICSE'07)
0-7695-2828-7/07 $20.00 © 2007

consistency. However, all of these fixes involve at
least one of the rule’s scope elements.

It is impossible to enumerate all concrete fixes for a
given inconsistency [11]. However, it is possible to
identify the starting points for fixing a given inconsis-
tency – its scope elements. There are seven scope ele-
ments in R14 (from six model elements) and as such
there are seven locations from where to start fixing this
inconsistency. We will show later that our list of
choices is typically small enough not to overwhelm the
designer. And we will show that it is correct and com-
plete (no false positives/negatives). For the designer,
knowing the starting point is often sufficient (i.e.,
Nentwich et al.’s abstract change actions [11]).

Locating Choices for an Erroneous Design Change

While the list of choices is small already, it can be
reduced further if the reason for the inconsistency is
known. If the designer believes that an inconsistency
was caused due to an erroneous design change then the
erroneous design change must be located and changed.
Locating an erroneous design change is difficult if
more than one change was involved (typical). Our ap-
proach identifies the erroneous design change by inter-
secting the set of design changes with the scope ele-
ments of a given inconsistency.

Table 2. Some of the Scope Elements for Rule R22
object s[incomingMessages] C&I
message play[name] I-Only
message wait[name] C-Only
class Streamer[statemachine] Unused
object s[base] C&I
transition play[name][target] Unused

R2
2

transition wait[name][target] Unused

Revisiting the illustration, it does not take much
reasoning to see that inconsistency R22 is misplaced.
R22 talks about the inconsistency of some messages
with respect to the statechart of Streamer. Our change
was supposed to only affect class Display and those
who use this class. Investigating the choices for fixing
R22, we find that only one of the three design changes
contributed to its inconsistency: the name change to
message “3:stream”, now play. This change must have
been incorrect and only one choice remains out of
originally seven possible choices (see Table 2; note,
the list of scope elements was abbreviated).

Once located, the easiest way to fix an erroneous
design change is to undo it. If the rule was consistent
before the change then undoing the change will make
it consistent again. Alternatively, the erroneous design
chance could be fixed by doing it differently. For rule
R22, the name change was wrong and should be un-

done because we changed the name of an outgoing
message of object d instead of an incoming message.
Surprisingly, undoing the name change also fixes in-
consistency R13. This is desirable but also unexpected.
We will discuss these kinds of side effects later.

Locating Choices for a Missing Design Change

Inconsistencies may happen even if the design
changes are correct. In our illustration, two inconsis-
tencies (R14 and R21) remain after the undo. Yet, on
closer inspection, the two design changes are correct. It
follows that additional design changes are needed to
regain consistency and the choices for fixing such in-
consistencies must involve the scope elements minus
the previous design changes. Since the name change to
message play (originally stream) is in the scope of
inconsistency R14 (recall Table 1), it should not be
considered as a choice for fixing this inconsistency.

4.3. Fixing an Inconsistency

A tool cannot decide on the best choice for fixing a
given inconsistency because there are factors other
than consistency that contribute to a good design (e.g.,
taste, gut feeling, experience, knowledge on the future
evolution of the design). Since these factors are typi-
cally not formalizable, it is the designer who must pick
the best choice. Also recall that the choices identified
are merely the starting points for fixing inconsistencies
because there are many concrete fixes for any given
choice [11]. So, it is the designer who must execute a
fix even if the starting point (choice) is obvious.

4.4. Dependencies among Inconsistencies

Existing work identifies choices for fixing individ-

ual inconsistencies but it does not consider the side
effects of these choices onto other inconsistencies [4].
Inconsistencies are not independent events – they typi-
cally come in clusters (see 6.2): they either share erro-
neous model elements or the erroneous model elements
are located in close proximity in the model. Therefore,
if a choice resolves one inconsistency but in doing so
affects the choices of another inconsistency then the
designer should know about this.

Our tool cannot decide whether fixes for multiple
inconsistencies are contradictory [11] but our tool can
tell the designer which inconsistencies are related. This
solves a hard problem because larger models contain
thousands of inconsistencies (the worst model of the
48 ones evaluated contained 10,465 inconsistencies!)
and a designer would find it impossible to identify re-
lated inconsistencies.

29th International Conference on Software Engineering (ICSE'07)
0-7695-2828-7/07 $20.00 © 2007

A dependency among inconsistencies exists if these
inconsistencies share one or more choices for fixing
them. We already observed a dependency among two
inconsistencies earlier when we undid the erroneous
design change (renaming of message stream to play).
There, the undo fix had the intentional effect of fixing
inconsistency R22 and it had the unintentional, though
positive, side effect of fixing inconsistency R13.

However, it turns out that it is quite possible that
two rules have a common choice although their scopes
do not intersect. This problem is caused by scope ele-
ments that refer to other UML model elements.
 message stream
 [name]
 [sender]
 [receiver]

 string

object user

object d
 [base]
 [incomingMessaes]
 [outgoingMessages]...

Figure 3. Two Scope Elements but One Choice

Consider the two remaining inconsistencies R14
and R21. Looking at their scopes, we find that they
have three common scope elements and consequently
three common choices for fixing them both. However,
this list is incomplete. Missing from the overlap are
two distinct scope elements whose changes are linked.
Figure 3 depicts the message stream as a data element
and shows that its receiver field references object d.
Yet, object d is aware of this reference because it con-
tains a back-pointing field, called incomingMessages,
which lists all messages that have object d as their re-
ceiver.

This example illustrates one out of many cases
where some fields of distinct scope elements are tied.
In almost all cases, the tie is between two scope ele-
ments but there could be more. Fortunately, it is possi-
ble to compute the back-pointing scope elements be-
cause UML has a well-defined meta model that identi-
fies all bi-directional relationships and derived fields.
We thus generated the complete list of back-pointing
scope elements for the fields of UML model element
(there are 3487 such back-pointing fields for UML
1.31). And, we located the specific model element(s)
that hold the back pointers introspectively. This has a
small overhead cost but this computation is only nec-
essary for changing model elements – a rather small
number over time. The extended scope of a rule thus
includes the original scope elements and their back-
pointing scope elements. The extended scope is 1.6
times larger.

1 Our approach is based on a UML 1.3 because of the needs of our
industrial partners. The newer UML 2.0 is not commonly supported
in industry, in part, because of legacy models and tools.

Dependencies among inconsistencies reveal the ex-
istence of common choices for fixing multiple incon-
sistencies. Dependencies, however, cannot guarantee
that there is indeed a single concrete fix for a common
choice that would satisfy all the inconsistencies. Thus,
a dependency implies an opportunity for a single de-
sign change to fix multiple inconsistencies. In reverse,
if there is no dependency among inconsistencies then
there cannot be a common choice for fixing them. No
dependency implies the need for multiple design
changes. Of the four inconsistencies caused by the
original three design changes, the choices for R14 and
R21 did not overlap with those of R13 and R22. The
undo fix earlier was thus a necessary and separate fix.

4.5. Side Effects of Fixing Inconsistencies

Fixes for inconsistencies are simply additional de-
sign changes. We already know that design changes
may have positive effects and negative effects – but it
is generally not possible to predict these side effects in
advance. The only way to correctly compute the side
effects is to explore each choice (execute its concrete
fix) and observe its effects. Doing so for every con-
crete fix is not scalable and generally not of interest to
the designer. To the best of our knowledge, there exists
no work today that is able to predict the side effects of
changes with any claim of accuracy. Nentwich et al.
[11] even argued that this problem is undecideable if
one attempts to analyze the rule logic. Our approach is
also limited in its ability to predict such side effects but
it does provide a useful annotation for every choice:

Unused Choices do not have Side Effects

A choice marked Unused is guaranteed to not affect
another rule. It is determined by the fact that its scope
element occurs in only one scope. The proof is omitted
but can be inferred from the completeness/correctness
property of the scope. From the over 73,000 inconsis-
tencies across the 48 UML models, we found that
roughly 13% had unused choices.
I-Only Choices have Positive Side Effects Only

A choice marked I-only affects multiple inconsis-
tencies but it is guaranteed to never affect consistent
rules. These choices do not have negative side effects.
We found that nearly 66% of all inconsistencies had I-
Only choices.
C-Only Choices have Negative Side Effects Only

A choice marked C-only may affect consistent
rules. These choices are problematic because they may
cause inconsistencies (C->I). However, our approach
cannot guarantee the correctness of C-only. We already
know that the scopes of rules are small but they are not
minimal. The scopes of consistent rules do include

29th International Conference on Software Engineering (ICSE'07)
0-7695-2828-7/07 $20.00 © 2007

scope elements that do not affect their consistency –
though we believe this error to be small! Fortunately,
C-only is conservative. If a model element is not in the
scope of a consistent rule then it truly does not affect
the consistency of that rule. Over 52% of all inconsis-
tencies had C-Only choices.
C&I Choices have Positive & Negative Side Effects

A choice marked C&I affects both inconsistent and
consistent rules. Such a choice may have positive and
negative side effects. As with C-Only, the negative
side effects cannot be guaranteed (false positives),
however, the positive ones can. Over 82% of all rule
instances had C&I scope elements. Table 1 and 2
above showed these annotations for inconsistencies
R14 and R22.

5. UML/Analyzer Tool

The UML/Analyzer tool [6] was extended in this
work to help the designer locate choices for fixing in-
consistencies, identify dependencies among rule in-
stances, locate common choices for fixing related in-
consistencies, and annotate choices with their potential
side effects. The tool provides all this information to
the designer on demand and in a non-intrusive manner.

The tool was also integrated with the design tool
IBM Rational Rose™ for ease of use and it was used
for the empirical evaluation discussed in Section 6.

2 The tool displays a more descriptive name for rule in-
stances instead of the abbreviated names used in this paper.

Figure 4 depicts a few screen snapshots of the tool.
The bottom-left depicts IBM Rational Rose™. A
choice for fixing inconsistency R14 is highlighted.
This inconsistency is also highlighted in the
UML/Analyzer tool on the top. The top right depicts
the scope elements for R142 and all its dependencies to
other rules. The color coding used in the tool indicates
the annotations Unused, I-Only, C-Only, and C&I. The
bottom right depicts another screen snapshot of the
UML/Analyzer tool. The scope element for message
stream[receiver] is highlighted and we see that this
scope element is used in R14 and that there is a back-
pointing scope element object d [incomingMessages]
which is used in R212.

6. Evaluation

The following discusses the correctness, complete-

ness, usability, and scalability of our approach.

6.1. Correctness and Completeness

The located choices for fixing inconsistencies are

guaranteed to be correct and complete: (1) for every
choice there is an actual concrete fix that resolves a
given inconsistency and (2) every concrete fix involves
at least one of the choices.

This observation should come as a surprise given
that the scope of rules contains false positives [6]. The
scopes of rules are not guaranteed to be minimal be-

Figure 4. UML/Analyzer Tool, integrated with IBM Rational Rose, depicts choices, dependencies, and side effect2

29th International Conference on Software Engineering (ICSE'07)
0-7695-2828-7/07 $20.00 © 2007

cause a rule typically iterates over a set of model ele-
ments in search for an invalid condition. In doing so,
some of the model elements accessed in search for this
condition are irrelevant. For example, rule R15, which
is consistent, iterated over all class methods of Display
until it found one that matches the name stop. It found
such a method after the third iteration (after methods
select and play). Since the first two methods did not
have the desired name, they were irrelevant to the con-
sistency of this rule. The evaluation backtracked until
it found the desired method. Unfortunately, this back-
tracking was invisible to model profiling and thus all
three methods were in the scope although only the last
one mattered.

During the evaluation of an inconsistency the same
backtracking occurs however all investigated model
elements have the potential of making the rule consis-
tent – or otherwise why would a rule care to access the
model element? For example, inconsistency R14 also
accessed the three methods select, play and stop and it
was inconsistent because none of the methods matched
the message name. While we could speculate which
one of the three methods should be changed to fix this
inconsistency, it is entirely feasible to rename any one
of the three methods. Renaming select would fix this
inconsistency as well as renaming play.3

The scope for inconsistent rules is thus complete
and minimal. Since our approach only locates choices
for fixing inconsistencies, we do not care that the
scope for consistencies is not minimal. Dependencies
and side effects of choices are computed based on the
extended scope of an inconsistency. Since our ap-
proach is correctly able to compute the extended scope
(based on code generated from the UML meta model),
we found that the extended scope is also correct and
minimal for inconsistencies. Only the C-only and C&I
annotations have false positives because they require
the extended scopes for consistent rules.

6.2. Usable but Useful?

We did not perform usability studies on human de-

signers. We thus could not evaluate whether the infor-
mation provided by our tool would indeed simplify the
design process. This is future work.

However, we empirically evaluated 48 UML mod-
els to determine whether our tool would not over-
whelm its user with too much information (i.e., too
many choices). These models were very diverse in
domain and size. Figure 5 depicts the sizes of the mod-
els which cover the entire spectrum from small to very

3 While both changes fix the inconsistency, renaming select
causes new inconsistencies while renaming stream does not!

large models of up to 36,000 model elements. Most of
the larger models originated from industry, some were
reverse engineered from software systems, and yet
others were obtained indirectly through colleagues. In
terms of domain, the models covered avionics systems,
medical systems, data-centric systems, and command-
and-control types of systems.

100

1000

10000

100000

1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46
UML Case Study Models

m
od

el
 s

iz
e

Figure 5. Sizes of the 48 UML Models

The empirical evaluation focused on 34 types of
rules covering UML class, sequence, and statechart
diagrams – the most widely used UML diagrams. The
rules were selected because of the needs of our indus-
trial partners. They do cover consistency, well-
formedness, and best practices. These rules had to be
instantiated over 400,000 times for all models com-
bined (the largest model evaluated 58,000 instances).

0

2

4

6

8

10

1000 10000 100000
model size

Average # Choices per Inconsistency
Average # Inconsistencies per Change

Figure 6. Number of Choices per Inconsistency and

Number of Inconsistencies per Design Change

The choices for fixing an inconsistency comprises
of a fix for every scope element: #choices = #scope
elements. We empirically evaluated whether the num-
ber of choices is manageable and does not overwhelm
the designer. We found that the number of choices was
in average 5.4 (between 2.5 and 8 in average) – a rea-
sonably small number. But more importantly, we
found that the number of choices did not increase with
the size of the model. Figure 6 demonstrates significant
variations in the number of choices across the 48 UML
models, however, the average number of choices do
not increase with size.

However, a design change may cause multiple in-
consistencies and thus the choices multiply accord-
ingly: #choices = #inconsistencies/change * #choices/
inconsistency. The average #inconsistencies/change
was very small. However, it was skewed by the fact
that we did not care about changes that caused consis-
tencies. We thus empirically evaluated #inconsisten-

29th International Conference on Software Engineering (ICSE'07)
0-7695-2828-7/07 $20.00 © 2007

cies/change for changes that caused inconsistencies
and it was 2.8 in average (Figure 6). Note that we did
this by randomly seeding changes because we could
not observe the designers. This number obviously de-
pended on how inconsistent a model was and we ob-
served that 90% of scope elements affected fewer than
9 rules in total – also a reasonable worst case.

1

10

100

1000

10000

100000

10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

Percentage of Design Changes

N
um

be
r o

f C
ho

ic
es thick line = averages

across all models

Figure 7. Most Design Changes have few Choices

Yet, there were some inconsistencies that had hun-
dreds of choices for fixing them. Figure 7 depicts the
#choices for fixing all inconsistencies caused by single
design changes. We observed a diseconomy of scale in
that 50% of all design changes generated up to 10
choices; 70% generated up to 36 choices; and 90%
generated up to 200 choices. Clearly, it was not feasi-
ble for a designer to manually investigate all choices
for all changes. However, this figure also showed that
most of the diseconomy of scale occured for a rather
small percentage of all changes. A designer could han-
dle 60-70% of all changes for all models, and 80% for
most models. And up to 90% for the majority of mod-
els. However, it is obvious that there is a need to elimi-
nate choices automatically for the <20% of changes.
This could be done through heuristics [11] or by priori-
tizing the choices (i.e., based on our annotations). We
will investigate this issue in future work.

0

20

40

60

80

100

1000 10000 100000
model size

de

pe
nd

en
ci

es

Figure 8. Number of Dependencies per Inconsistency

The number of dependencies among inconsistencies
would appear to be quite large. First, it is based on the
extended scopes for inconsistencies which are 1.6
times larger than the regular scopes. Second, only a
single scope element must overlap for there to be a
dependency. This could average to the squared size of
the extended-scope – an unreasonable number. Fortu-
nately, we observed 18 dependencies or less for most
inconsistencies (Figure 8) – this is quite reasonable

given that there is a similar diseconomy of scale asso-
ciated with dependencies (Figure 9) and thus most
inconsistencies had many fewer dependencies. This
number also confirmed that inconsistencies were not
random occurrences. They clustered among common
model elements (hence, the need for dependencies in
the first place) and thus if there was a dependency
among two inconsistencies then it usually involved
multiple scope elements. We did observe a slight in-
crease in the number of dependencies and the model
size. This is partially explained by the fact that the
larger models were somewhat more inconsistent than
the smaller models. However, do note that the x-axis
of Figure 8 is exponential. The increase is thus very
small.

0%

10%

20%

30%

40%

50%

60%

0 1 2 3 4 5 6 7 8 9 10 11 12 13

Choice affecting 0, 1, 2, … Rule Instances

Pe
rc

en
ta

ge
 o

f C
ho

ic
es

thick line = averages
across all models

Figure 9. Most Choices affect few Rules

Finally, our approach annotates choices with Un-
used, I-only, C-only, and C&I. Since there is exactly
one annotation per choice, this annotation will not
overwhelm the designer. In section 4.5 we already
presented empirical evidence that all four annotations
are very likely – though C&I is the strongest of all.
These annotations are a window into the most complex
part of fixing inconsistencies – avoiding new inconsis-
tencies. Figure 9 demonstrates that most choices
(>90%) affect multiple rules – thus most changes need
to consider the side effects of change onto other rules.
However, most choices do not affect more than a hand-
ful of rules. Thus, the side effect is manageable.

6.3. Scalability

Our approach is linearly complex (both memory

and computation cost) and thus quite scalable. The
overhead of locating choices, identifying dependen-
cies, and annotating choices is negligible. The worst
case computation was less than 20 milliseconds and
was often too short to even be measured on an Intel
Centrino 1.7GHz. This cost is in addition to the cost of
instant consistency checking [6] which was in average
9ms per change with a worst case of 2 seconds.

29th International Conference on Software Engineering (ICSE'07)
0-7695-2828-7/07 $20.00 © 2007

6.4. Threats to Validity

Internal validity: We investigated 34 rules in the con-
text of 48 third-party UML models. Since our ap-
proach performed well for all these models, we believe
that there is little threat to the internal validity of the
measured data. However, we were not able to directly
observe the designers in their use of our approach and
cannot provide heuristics on likely changes. Future
work is thus needed to augment the usability study.
External validity: The more serious issue of our study
hinges on rules. It is quite feasible to construct rules
that are inherently inscalable. While the large number
of rules used in this study suggests that most rules are
scalable we must exclude non-scalable rule should they
occur. Furthermore, while the quantity of rule types
has no implication on the number of choices, it does
affect the number of dependencies and the distribution
of Unused, I-only, C-only, and C&I. The more rules,
the more crowded the model and thus the more likely
the undesired side effects. This is an inherent problem
of modeling and not just a limitation of our approach.
In terms of rule quality, our approach assumes that
rules are implemented correctly and do not access
model elements they do not need.

There is also the issue of abstract choices versus
concrete choices. It is infeasible to enumerate all con-
crete choices of fixing an inconsistency. Nentwich et
al. [11] thus proposed abstract change actions, a con-
cept we borrowed in this work. Our abstract choices
identified the starting points for fixes but not all model
elements involved in fixing a model. Consequently, the
dependencies and annotations identified by our ap-
proach were limited to these starting points.

7. Conclusion

Generally, a tool cannot repair models automati-
cally; however, a tool can provide choices and it can
predict side effects. This paper demonstrated that it is
quite feasible to correctly detect all choices for fixing
inconsistencies and doing so does not overwhelm the
designer in most situations. However, the more serious
issue of working with inconsistencies is deciding on
choices that affect multiple inconsistencies. Inconsis-
tencies typically come in clusters and it is important to
avoid making repairs that inadvertently and adversely
affect how to fix other, related inconsistencies. We
demonstrated that these situations are the norm and not
the exception (i.e., most inconsistencies have depend-
encies on other inconsistencies). We also demonstrated
that our approach is able to detect these dependencies
among inconsistencies and identify the common
choices for fixing them.

8. References

 1. Balzer, R.: "Tolerating Inconsistency," Proceedings of
13th International Conference on Software Engineering
(ICSE-13), May 1991, pp.158-165.

 2. Boehm B. W.: A Spiral Model of Software Develop-
ment and Enhancement. IEEE Computer 21(5), 1988,
pp.61-72.

 3. Bohner, S.A., Arnold, R. S.: Software Change Impact
Analysis. IEEE Computer Society Press, 1991.

 4. Briand, L. C. , Labiche, Y., and O'Sullivan, L.: "Impact
Analysis and Change Management of UML Models ,"
Proc. of the International Conference on Software Main-
tenance, Amsterdam, The Netherlands, 2003, pp.256.

 5. Dohyung, K.: "Java MPEG Player,"
http://peace.snu.ac.kr/dhkim/java/MPEG/, 1999.

 6. Egyed, A.: "Instant Consistency Checking for the
UML," Proc. of the 28th International Conference on
Software Engineering (ICSE), Shanghai, China, 2005.

 7. Egyed, A.: "UML/Analyzer: A Tool for the Instant
Consistency Checking of UML Models," Proceedings of
the 29th International Conference on Software Engineer-
ing (ICSE 2007), Minneapolis, USA, May 2006.

 8. Egyed A. and Balzer B.: Integrating COTS Software
into Systems through Instrumentation and Reasoning. In-
ternational Journal of Automated Software Engineering
(JASE) 13(1), 2006, pp.41-64.

 9. Fickas, S., Feather, M., Kramer, J.: Proceedings of ICSE-
97 Workshop on Living with Inconsistency. Boston,
USA, 1997.

 10. Hunter A. and Nuseibeh B.: Managing Inconsistent
Specifications: Reasoning, Analysis, and Action. ACM
Transactions on Software Engineering and Methodology
7(4), 1998, pp.335-367.

 11. Nentwich, C., Emmerich, W., and Finkelstein, A.: "Con-
sistency Management with Repair Actions," Proc. of the
25th International Conference on Software Engineering
(ICSE), Portland, USA, 2003, pp.455-464.

 12. Nentwich C., Capra L., Emmerich W., and Finkelstein
A.: xlinkit: a consistency checking and smart link gen-
eration service. ACM Transactions on Internet Technol-
ogy (TOIT) 2(2), 2002, pp.151-185.

 13. Orso, A., Apiwattanapong, T., Law, J., and Rothermel,
G.: "An Empirical Comparison of Dynamic Impact
Analysis Algorithms," Proceedings of the 26th Interna-
tional Conference on Software Engineering (ICSE), Ed-
inburgh, United Kingdom, May 2004, pp.491-500.

 14. Rajlich V. and Gosavi P.: Incremental Change in Ob-
ject-Oriented Programming. IEEE Software 21(4), 2004,
pp.62-69.

 15. Rumbaugh, J., Jacobson, I., Booch, G.: The Unified
Modeling Language Reference Manual. Addison
Wesley, 1999.

 16. van Der Straeten, R., Mens, T., Simmonds, J., and
Jonckers, V.: "Using Description Logic to Maintain
Consistency between UML Models," Proceedings of 6th
International Conference on the Unified Modeling Lan-
guage (UML 2003), October 2003.

29th International Conference on Software Engineering (ICSE'07)
0-7695-2828-7/07 $20.00 © 2007

